Instructor: Robert Morelos-Zaragoza
Office Location: E373
Telephone: (408) 924-3879
Email: robert.morelos-zaragoza@sjsu.edu (Preferred)
Office Hours: TR 15:00 to 16:00
Class Days/Time: MW 16:30-17:45
Classroom: BBC 22
Prerequisites: EE 210 or instructor’s consent

Course Description

This course is an experimental approach to wireless communications. The topics will include analog/digital transmission, ADC/DAC, and wireless channel modeling. Students will be exposed to MATLAB, software defined radios (USRP), GNU Radio, GRC (GNU Radio Companion) as part of homework assignments and projects. GNU Radio (http://gnuradio.org) software development platform is based on Python and C++ languages. At the end of the class, students will be able describe design challenges associated with building a wireless digital communication system.

Course Goals and Student Learning Objectives

After completing this course, students will be able to understand and describe some of the design challenges associated with building a wireless digital communication system based on software-defined radios.

GE/SJSU Studies Learning Outcomes (LO), if applicable

Upon successful completion of this course, students will be able to:

LO1 Demonstrate an understanding of the fundamentals of Electrical Engineering, including its mathematical and scientific principles, analysis and design.
LO2 Demonstrate the ability to apply the practice of Engineering in real-world problems.

Course Content Learning Outcomes

Upon successful completion of this course, students will be able to:

LO3 Analyze the spectral domain representation of periodic signals.
LO4 Analyze characteristics of noise and interference in wireless channels.
LO5 Analyze filters, such as low-pass, bandpass and matched (correlation) and understand their impact on the performance of a communication system.

LO6 Describe analog modulation schemes, FM and AM, and specify the effect of system parameters (such as carrier frequency, bandwidth, rate) on performance.

LO7 Specify and quantify the effect of ADC and DAC on wireless system performance.

LO8 Describe digital modulation schemes (PSK, DPSK, GMSK, QPSK and QAM) and the effects of system parameters and synchronization errors in their performance.

LO9 Analyze the multipath effects of wireless channels and demonstrate their compensation with equalization.

LO10 Describe multicarrier (OFDM) modulation and its performance.

LO11 Interpret and report performance predictions of wireless communications with software-defined radios.

Required Texts/Readings

Textbook

(http://eceserv0.ece.wisc.edu/~sethares/telebreak.html)

Either version of the textbook is acceptable.

Other Readings

Classroom Protocol

Students are expected to participate actively in class. Students will turn their cell phones off or put them on vibrate mode while in class. They will not answer their phones in class.

Dropping and Adding

Students are responsible for understanding the policies and procedures about add/drops, academic renewal, etc. Information on add/drops are available at http://info.sjsu.edu/web-dbgen/narr/soc-fall/rec-298.html. Information about late drop is available at http://www.sjsu.edu/sac/advising/latedrops/policy/. Students should be aware of the current deadlines and penalties for adding and dropping classes.

Assignments and Grading Policy

There will be one midterm exam and a final exam. Exams are closed book and notes. Students can bring a formula sheet (one page – both sides). There will be no make-up exams. Exam solutions will be posted in the web site of the course. Homework will be given regularly and due one week later. Homework, projects and exams require the use of MATLAB/Octave scripts and Simulink models.
Grades

Midterm exam 25 %
Project 25 %
Final exam 25 %
Assignments (Homework and post-lab reports) 25 %
Total 100 %

Grading Percentage Breakdown

90% and above A
89% - 85% A-
84% - 82% B+
81% - 79% B
78% - 75% B-
74% - 72% C+
71% - 69% C
68% - 65% C-
64% - 62% D+
61% - 59% D
58% - 55% D-
below 55% F

University Policies

Academic integrity

Students should know that the University’s Academic Integrity Policy is available at http://www.sa.sjsu.edu/download/judicial_affairs/Academic_Integrity_Policy_S07-2.pdf. Your own commitment to learning, as evidenced by your enrollment at San Jose State University and the University’s integrity policy, require you to be honest in all your academic course work. Faculty members are required to report all infractions to the office of Student Conduct and Ethical Development.

Instances of academic dishonesty will not be tolerated. Cheating on exams or plagiarism (presenting the work of another as your own, or the use of another person’s ideas without giving proper credit) will result in a failing grade and sanctions by the University. For this class, all assignments are to be completed by the individual student unless otherwise specified. If you would like to include in your assignment any material you have submitted, or plan to submit for another class, please note that SJSU’s Academic Policy F06-1 requires approval of instructors.

Campus Policy in Compliance with the American Disabilities Act

If you need course adaptations or accommodations because of a disability, or if you need to make special arrangements in case the building must be evacuated, please make an appointment with me as soon as possible, or see me during office hours. Presidential Directive 97-03 requires that students with disabilities requesting accommodations must register with the DRC (Disability Resource Center) to establish a record of their disability.
EE Department Honor Code

The Electrical Engineering Department will enforce the following Honor Code that must be read and accepted by all students.

“I have read the Honor Code and agree with its provisions. My continued enrollment in this course constitutes full acceptance of this code. I will NOT:

• Take an exam in place of someone else, or have someone take an exam in my place
• Give information or receive information from another person during an exam
• Use more reference material during an exam than is allowed by the instructor
• Obtain a copy of an exam prior to the time it is given
• Alter an exam after it has been graded and then return it to the instructor for re-grading
• Leave the exam room without returning the exam to the instructor.”

Measures Dealing with Occurrences of Cheating

• Department policy mandates that the student or students involved in cheating will receive an “F” on that evaluation instrument (paper, exam, project, homework, etc.) and will be reported to the Department and the University.
• A student’s second offense in any course will result in a Department recommendation of suspension from the University.

Notes:

1) At least five of the lectures will be held in the RF Communications Laboratory located in room 238 (second floor) of the Engineering building. The dates will be announced in advance in class and posted in the webpage. There will be post-lab assignments and therefore ALL students are REQUIRED to attend the lectures held in the laboratory.

2) I may attend a conference and/or give a presentation out of town this semester. There will be either extra time in the lectures or a make-up lecture whose date/time will be announced in class in advance
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics, Readings, Assignments, Deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction. Block diagram and functionality of a radio: Up- and Down-conversion.</td>
</tr>
<tr>
<td>2</td>
<td>Lowpass representations of bandpass signals. Amplitude modulation (AM) transmission and reception. Experiment # 1</td>
</tr>
<tr>
<td>3</td>
<td>Frequency shifting and errors. Spectral density and Additive White Gaussian Noise. Experiment # 2 – part 1</td>
</tr>
<tr>
<td>4</td>
<td>Frequency modulation (FM) transmission and reception. Experiment # 2 – part 2</td>
</tr>
<tr>
<td>5</td>
<td>Sampling. Analog-to-digital conversion</td>
</tr>
<tr>
<td>6</td>
<td>Digital Communication Systems</td>
</tr>
<tr>
<td>7</td>
<td>Baseband communication techniques</td>
</tr>
<tr>
<td>8</td>
<td>Passband communication techniques Experiment # 3</td>
</tr>
<tr>
<td>9</td>
<td>Wireless digital communications</td>
</tr>
<tr>
<td>10</td>
<td>Wireless channel modeling</td>
</tr>
<tr>
<td>11</td>
<td>Wireless channel modeling Experiment # 4</td>
</tr>
<tr>
<td>12</td>
<td>Midterm Exam. Project assigned</td>
</tr>
<tr>
<td>13</td>
<td>Synchronization and channel estimation</td>
</tr>
<tr>
<td>14</td>
<td>Equalization, RAKE receiver and OFDM Experiment # 5</td>
</tr>
<tr>
<td>15</td>
<td>Wireless standards and applications</td>
</tr>
<tr>
<td>Final Exam</td>
<td>Wednesday 12/19 14:45-17:00 Project report and presentation due</td>
</tr>
</tbody>
</table>