Course and Contact Information

Instructor(s): John (JeongHee) Kim
Office Location: ENG259
Telephone: (408) 623-8412
Email: jeonghee.kim@sjsu.edu & jeonghee_kim@yahoo.com
Office Hours: Th, Tr 5:50-6:30 & by appointment.
Class Days/Time: Th & Tr 4:30 to 5:45 pm
Classroom: ENG345
Prerequisites: Graduate student standing

Course Description

Course Format

This course adopts a flipped classroom delivery (in class format) format.

Faculty Web Page and MYSJSU Messaging

Course materials such as syllabus, handouts, notes, assignment instructions, etc. can be found on my on Canvas Learning Management System course login website at http://sjsu.instructure.com. You are responsible for regularly checking with the messaging system through MySJSU on Spartan App Portal http://one.sjsu.edu (or other communication system as indicated by the instructor) to learn of any updates. For help with using Canvas see Canvas Student Resources page (http://www.sjsu.edu/ecampus/teaching-tools/canvas/student_resources)

Course Goals

Specific topics covered in EE210-1 include:
1- Discrete-time signals and systems
2- Linear and time-invariant (LTI) systems
3- Discrete-time Fourier transform & properties
4- Convolution and correlation
5- The Z-transform & properties
6- Frequency response and pole/zero relationship
7- Example FIR & IIR filters; linear-phase filters
8- Cascade, parallel and state space filter realization
9- Fourier transform of continuous-time signals & properties
10- Sampling & reconstruction of continuous-time signals
11- The Discrete Fourier Transform (DFT) and fast implementations (FFT)
12- Continuous-time signals and systems in the complex frequency domain
13- Time, frequency, and state space representation of continuous-time systems
14- Selected applications

Course Learning Outcomes (CLO)

LO1: Distinguish how to analytically and numerically calculate spectra of continuous-time and discrete-time signals from various Fourier transform definitions and transform properties.
LO2: Classify how to infer from signals and their spectra basic attributes including energy, power, width, moments, among others.
LO3: Analyze analytically and numerically perform basic signal operations such as convolutions, and correlations in either the time or frequency domain and to relate such operations to real-life applications.
LO4: Use various system attributes such as linearity, shift invariance, causality, and stability, and to understand their relationship to the system function.
LO5: Analyze the time and frequency responses of linear shift invariant systems to aperiodic and periodic temporal or spatial input signals both in the real frequency and complex-frequency domains.
LO6: Analyze the developed analysis methodologies to real-life applications such as filtering, sampling, imaging, control, communications, bio, signal processing, among others.

Required Texts/Readings

Textbook
Discrete-Time Signal Processing, 3rd Ed., by Oppenheim and Schafer, Pearson/Prentice-Hall 2010
ISBN-10: 0131988425

Other Readings
ISBN: 0-13-016077-6

Other technology requirements / equipment / material

The Student Version of Matlab (or Python or Octave) is recommended for supporting numerical computations when needed. It’s available from the Mathworks Inc. (http://www.mathworks.com/academia/student_version/). Matlab and many of its “toolboxes” are available on the EE Department PC’s in room ENG387 (an open lab; open times are posted on the door). Matlab may be used to demonstrate some topics in the class.

Course Requirements and Assignments

Lectures

- The course will follow the selected subjects as listed on the course description. Additional theory, demo and examples will be given and discussed in class as much as time permits.
- Please note that lecture materials are NOT solely based on the required text and so students are responsible for following up the lecture in order to prepare themselves for the exams
• Students are responsible for the reading the text, handouts, lecture presentations, etc.
• Students are responsible for following up and keeping track of the in-class lecture materials.
• Students are responsible for finding and reading additional books, papers, examples, etc. in order to gain more understanding of the materials discussed in the lectures.

Midterm and Final Exams and Design Project

There will be two midterm exam, one comprehensive final exam, project and quizzes. The Final exam date is posted by the university. Since make-up exams will NOT be allowed, please make sure that you are able to attend all exams at the indicated scheduled dates and times (from the beginning of the semester).

☐ All exams are closed-book & notes exams.
 • One sheet (double-side 8.5x11) of only hand-written note is allowed for each midterm exam and two sheets of hand-written notes (two sheets from midterm exams) are allowed for the final exam.
 • Only basic calculators may be allowed (It will be notified before each exam).
 • All exams are in-class exams
 • No computer, tablet/ipad, or cell phone will be allowed

☐ There will be no make-up exams

Homework Assignments

• Homework assignments and/or lab exercises will be given with due dates

 • If you turn in assignments late (within one week from the due date), maximum of 10% credits will be given. Solutions to the homework assignments and all other info are posted in group site

 • If 75% of combined HW, projects and quizzes are not done by end of semester, you will get F grade automatically.

 • HW has to have cover page given in the site otherwise you will not get any credits or deducted up to 100 percent. Final solutions on HW and exam must be boxed. Otherwise you will not get credits. Only one side of page must be used in the HWs. (No HW sending through an email will be accepted.) HW should be clean, legible, stapled on top left corner and proper paper should be used.

 • If unreasonable or out of common sense behavior happens in the class, one will be asked to leave from the class and will be given “F” grade. (No feet on a table or chair, taking hat off, no cellphone use or web surfing, no talking with neighbors). And I will drop you from the class if the class is disturbed unreasonably with my right.

 • No food is allowed (Water is ok). All the exams and quizzes are done in the class and only allowed to use pencil, eraser (no pen) and calculator.

 • Homework must be submitted in class on time.

 • Do NOT submit HW via email. Submit HWs in class as hard-copies (paper) only

 • Late submission will NOT be accepted (absolutely!).

 • There is no make-up homework/projects. To get credit for your homework/lab assignments, submissions must be neat, clean, and must be done professionally and seriously. Your official name (not nickname), course #, and homework # must be visibly shown on each assignment.
“Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practice. Other course structures will have equivalent workload expectations as described in the syllabus.”

Final Examination or Evaluation

- The final exam is an in-class exam.
- The exam date and time is defined in Course Schedule (last page of this syllabus) or can be found in the university final exam schedule.
- It is a comprehensive exam; the exam covers the all materials covered in the class.
- More details can be found in University policy S17-1 (http://www.sjsu.edu/senate/docs/S17-1.pdf)

Grading Information

The overall course grades (letter-grades) will be assigned based on a defined grading standard as shown below. The weights of the whole course work assignments are:

1. Homework assignments & Projects & Quizzes 20%
2. Two midterm exams 50% (25% each)
3. One final exam 30%

And the overall course grade (letter-grade) will be assigned based on the distribution below:

Grading criteria (Example: 74% results in a grade of C+):

- 0<F<57=D
- minus <60=D<64=D plus <67=C minus <70=C<74=C plus <77=B minus <80=B<84=B plus <87=A
- minus <90=A<100

Classroom Protocol

- EE210 students understand that professional attitude is necessary to maintain a comfortable academic environment in the classroom. For examples:
 - Students will put their cell phones in quiet/vibration mode during the lecture.
 - Students understand that drinking water, juices, etc. during the lecture is acceptable but NOT eating.
- Students will not skip the lecture and then ask the instructor to summarize the lecture later on.
- Office hours are for students to have questions, not for the instructor to summarize the lecture for any specific student.
- Students will come to the class on time and leave the class at the end of the lecture.
- Students will consult the course syllabus for class policies and requirements before requesting the instructor for any special considerations and/or exceptions
- To minimize possible tension during the exams, students are requested to follow the exam rules closely.
- Students will works, HW and projects, by their own and will not share the work with other students
- Students understand that long-term learning is their responsibility and will always keep it up.

If you need explanations on lecture materials, homework assignments, exams, etc…., please see me in-person during my office hours. Do NOT email me for these matters. If you must send me an email, please clearly specify your full-name, course, section, etc. I will not respond to email that I do not know the author or emails that have no manners.
University Policies
Per University Policy S16-9 (http://www.sjsu.edu/senate/docs/S16-9.pdf), relevant university policy concerning all courses, such as student responsibilities, academic integrity, accommodations, dropping and adding, consent for recording of class, etc. and available student services (e.g. learning assistance, counseling, and other resources) are listed on Syllabus Information web page (http://www.sjsu.edu/gup/syllabusinfo), which is hosted by the Office of Undergraduate Education. Make sure to visit this page to review and be aware of these university policies and resources.

EE Department Honor Code
The Electrical Engineering Department will enforce the following Honor Code that must be read and accepted by all students.
“I have read the Honor Code and agree with its provisions. My continued enrollment in this course constitutes full acceptance of this code. I will NOT:
• Take an exam in place of someone else, or have someone take an exam in my place
• Give information or receive information from another person during an exam
• Use more reference material during an exam than is allowed by the instructor
• Obtain a copy of an exam prior to the time it is given
• Alter an exam after it has been graded and then return it to the instructor for re-grading
• Leave the exam room without returning the exam to the instructor.”

No Incomplete grade in this class.

Measures Dealing with Occurrences of Cheating
• Department policy mandates that the student or students involved in cheating will receive an “F” on that evaluation instrument (paper, exam, project, homework, etc.) and will be reported to the Department and the University.
• A student’s second offense in any course will result in a Department recommendation of suspension from the University.
Week Topics

<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 1 Introduction
Signals and Systems | |
| 2 Continuous Time (CT) Signals & Fourier Transform (FT)
CT Fourier transform & properties 1 | |
| 3 CT Fourier transform properties & Fourier Series
CT Convolution | |
| 4 Properties of time domain vs. Frequency domain relationships
Sampling process of CT signals | |
| 5 DT LTI (discrete time linear time invariant) Systems and properties
DT Fourier transform (DTFT) | |
| 6 DT Fourier transform (DTFT): properties | |
| 7 The z-transform & its inverse: definitions, example pairs
Midterm Exam I | |
| 8 The z-transform: properties, system function
Z transform and filtering relationships | |
| 9 Laplace transform | |
| 10 The discrete Fourier transform (DFT)
The DFT: circular and linear convolutions | |
| 11 Discrete Fourier Series (DFS)
DFT vs. FFT (Fast Fourier Transform) | |
| 12 FFT: DIT (decimation in time) & DIF (decimation in frequency) | |
| 13 **Midterm Exam II** | |
| 14 Finite Impulse Response filter (FIR) filter design | |
| 15 Infinite Impulse Response filter (IIR) filter design | |
| 16 Review | |
| Final Exam | Wednesday, May 13 1445-1700 |