San José State University
Department of Electrical Engineering
EE127-01: Electronics for Bioengineering Applications
Fall 2018

Course and Contact Information

Instructor: Nhat Minh Nguyen, Ph.D.
Office Location: ENG290
Telephone: TBD
Email: nhat.m.nguyen@sjsu.edu
Office Hours: Friday 8:00-9:00 PM or by appointment
Class Days/Time: Friday 6:30-7:30 PM (Lecture)
 Friday 7:30-9:15 PM (Lab)
Classroom: Lecture: Engineering Building 345
 Lab: Engineering Building ENG290
Prerequisites: EE 98 with C or better

Course Format

This course will be taught primarily face-to-face instruction. Course materials, syllabus, assignments, exams,
grades and other information will be posted on the SJSU Canvas course site at http://sjsu.instructure.com/ You are
responsible to check Canvas regularly for class work and exams. You also can find Canvas video tutorials and
documentations at http://ges.sjsu.edu/canvas-students

If you have questions regarding the use of Canvas and/or WebEx, please file a ticket at
http://ges.sjsu.edu/instructional-design-help

Course Description

Study of the fundamental concepts of electrical circuits relevant to the use and design of biomedical instruments
and devices currently used for patient care using several examples.

Prerequisite: EE 98 with C or better

Course Goals

In this course, students will learn the fundamental concepts of active and passive electronic components, sensors,
amplifiers and filters, analog-to-digital converters and embedded systems which are relevant to the uses and
implementation in biomedical instruments. The course is designed to help students understand architecture
design, hardware platforms, and sensing technologies of some popular medical devices. Students also have
opportunities to have hand-on experiences to measure the physiological signals such as EKG, EMG, and EEG
from a real human model. Some critical aspects of wearable devices will also be discussed such as wireless
telemetry communication, signal acquisition and conditioning, power consumption and power harvesting
circuitry, and fabrication of implantable sensors.
This course aims to engineering students who have basic knowledge and understanding of electronic circuits and want to learn more about the system-level design of biomedical instruments. The course will cover examples and lessons learnt in designing of some common physiological measurement system. The lab and lecture materials will provide students methodological thinking process and strategic approaches to design some bio-related apparatuses including determine functionalities, establish block diagram, select necessary components and optimize the sensing and recording modules. The course is a preparation for students who want to move forward in medical device and bio-sensing industry.

Course Learning Outcomes (CLO)
Upon successful completion of this course, students will be able to:

- CLO 1 Understand the physiological sources for biomedical signals
- CLO 2 Understand biosensors, noise interferences in biomedical instruments
- CLO 3 Understand and explain the block diagrams of some biomedical instruments
- CLO 4 Understand fundamental component blocks in biomedical instruments:
 - Sensors
 - Operational amplifiers
 - Filters
 - Analog-to-digital converters
 - Regulators
 - Power distribution networks
- CLO 5 Understand biomedical devices such as ECG, EMG, and EEG
- CLO 6 Build prototypes of biomedical instruments in the lab
- CLO 7 Collect measurement data, and perform statistical data analysis

Required Texts/Readings

Textbook

Other Readings

Course Requirements and Assignments

“Success in this course is based on the expectation that students will spend, for each unit of credit, a minimum of 45 hours over the length of the course (normally three hours per unit per week) for instruction, preparation/studying, or course related activities, including but not limited to internships, labs, and clinical practica. Other course structures will have equivalent workload expectations as described in the syllabus.” More details can be found from *UniversitySyllabusPolicyS16-9* at http://www.sjsu.edu senate/docs/S16-9.pdf
Grading Information

- **Problem sets (20%)**: Problems are given after every lecture. The problem sets will relate to the class lecture. The problems normally are due one (1) week after being given. There is no late submission because the solution will be uploaded online after the due date.

- **Lab reports (20%)** are important to reflect the students’ understanding about the lab materials. While the lab required teamwork, lab reports must be done individually. Each lab reports should include the names of all team members for cross checking the measurement data. The lab reports are due one (1) week after each lab session. There is no late submission.

- **Project and project reports (10%)** will be the team projects and due near the end of the semester. Students need to specify their roles in the project and receive the credits according to their contribution.

- **Midterm exam (30%)** is given twice per semester. Make-up exams are only allowed if the situation warrants it.

- **Final exam (20%)** date is following the university calendar. Make-up exams are only allowed if the situation warrants it.

Determination of Grades

- 90 to 100 A
- 85 to 89 A-
- 80 to 84 B+
- 75 to 79 B
- 70 to 74 B-
- 65 to 69 C+
- 60 to 64 C
- 55 to 59 C-
- 50 to 54 D
- 0 to 49 F

“This course must be passed with a C- or better as a CSU graduation requirement.”

University Policies

Per University Policy S16-9, university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs’ Syllabus Information webpage at http://www.sjsu.edu/gup/syllabusinfo/

Policy on Cheating

A student or students involved in a cheating incident in a test, homework, report, quiz or lab project will receive an F in the course and will be reported to the judicial affairs office and subjected to disciplinary action. See more information at: http://info.sjsu.edu/static/schedules/integrity.html.

Dropping and Adding

Students are responsible for understanding the policies and procedures about add/drop, grade forgiveness, etc. Refer to the current semester’s Catalog Policies section at http://info.sjsu.edu/static/catalog/policies.html. Add/drop deadlines can be found on the current academic year calendars document on the Academic Calendar.
webpage at http://www.sjsu.edu/provost/academic_affairs/resources/academic_calendars/. The Late Drop Policy is available at http://www.sjsu.edu/aars/policies/latedrops/policy/. Students should be aware of the current deadlines and penalties for dropping classes.

Information about the latest changes and news is available at the Advising Hub at http://www.sjsu.edu/advising/.
Course Schedule

The schedule is tentative and subjected to change. Students are responsible to check the email or Canvas to get the most updated information.

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics, Readings, Assignments, Deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8/24/2018</td>
<td>Course Overview</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Introduction to Medical Instrumentation</td>
</tr>
<tr>
<td>2</td>
<td>8/31/2018</td>
<td>Basic Electronic Components</td>
</tr>
<tr>
<td>3</td>
<td>9/7/2018</td>
<td>Biosensors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab 1: Get-to-Know Equipment and Lab Facilities</td>
</tr>
<tr>
<td>4</td>
<td>9/14/2018</td>
<td>Operational Amplifiers (I)</td>
</tr>
<tr>
<td>5</td>
<td>9/21/2018</td>
<td>Operational Amplifiers (II)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Midterm Exam Review</td>
</tr>
<tr>
<td>6</td>
<td>9/28/2018</td>
<td>Midterm Exam #1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab 2: Operational Amplifiers</td>
</tr>
<tr>
<td>7</td>
<td>10/5/2018</td>
<td>Filters (I)</td>
</tr>
<tr>
<td>8</td>
<td>10/12/2018</td>
<td>Filters (II)</td>
</tr>
<tr>
<td>9</td>
<td>10/19/2018</td>
<td>Analog-to-Digital Converters</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab 3: Filters</td>
</tr>
<tr>
<td>10</td>
<td>10/26/2018</td>
<td>Regulators and Power Distribution</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Midterm Review</td>
</tr>
<tr>
<td>11</td>
<td>11/2/2018</td>
<td>Midterm Exam #2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab 4: ADC</td>
</tr>
<tr>
<td>12</td>
<td>11/9/2018</td>
<td>Electrocardiography (ECG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab 5: ECG</td>
</tr>
<tr>
<td>13</td>
<td>11/16/2018</td>
<td>Electromyography (EMG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lab 6: EMG</td>
</tr>
<tr>
<td>14</td>
<td>11/23/2018</td>
<td>NO CLASS – THANKSGIVING HOLIDAY</td>
</tr>
<tr>
<td>15</td>
<td>11/30/2018</td>
<td>Electroencephalography (EEG)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Final Exam Review</td>
</tr>
<tr>
<td>16</td>
<td>12/7/2018</td>
<td>Project Demo</td>
</tr>
<tr>
<td>17</td>
<td>12/14/2018</td>
<td>Final Exam (7:45 to 10:00 PM)</td>
</tr>
</tbody>
</table>
EE Department Honor Code

The Electrical Engineering Department will enforce the following Honor Code that must be read and accepted by all students.

“I have read the Honor Code and agree with its provisions. My continued enrollment in this course constitutes full acceptance of this code. I will NOT:

- Take an exam in place of someone else, or have someone take an exam in my place
- Give information or receive information from another person during an exam
- Use more reference material during an exam than is allowed by the instructor
- Obtain a copy of an exam prior to the time it is given
- Alter an exam after it has been graded and then return it to the instructor for re-grading
- Leave the exam room without returning the exam to the instructor.”

Measures Dealing with Occurrences of Cheating

- Department policy mandates that the student or students involved in cheating will receive an “F” on that evaluation instrument (paper, exam, project, homework, etc.) and will be reported to the Department and the University.
- A student’s second offense in any course will result in a Department recommendation of suspension from the University.