San José State University
Charles W. Davidson College of Engineering
DEPARTMENT OF ELECTRICAL ENGINEERING
EE120L - Microprocessor Based System Design Laboratory, Section 02, Fall 2021

Course and Contact Information

Coordinator: Prof. Binh Le
Instructor(s): Zenith Chokshi
Telephone: (408)-775-9838
Email: zenithbhai.chokshi@sjsu.edu
Office Hours: Monday, 3:45PM - 4:15PM
Class Days/Time: Tuesday, 12:30PM - 3:15PM
Classroom: Engineering Building 307
Prerequisites: EE 118 (with grade of “C-” or better)
EE 120L (to be taken concurrently)
Knowledge in computer programming and software development
Good skills in C programming
Advanced knowledge in number systems and basic logic components

Course Description

EE 120 Laboratory is part of the EE 120 course. Students taking EE 120 are required to register for one lecture section and one laboratory section. At the end of the semester, laboratory work will be integrated with the lecture one to determine EE 120 course grade. There will be no grade/pass/non-pass for the laboratory, but students must complete the laboratory in order to complete EE 120 course. Major activities of EE120 laboratory are listed as below:

• Use of the software development tool to explore microprocessor architecture, addressing modes, instruction set, memory, and I/O.
• Develop Assembly and C/C++ programs to control an embedded microprocessor-based system such as a robot.
• Implement circuits (hardware and software) to interface a microcontroller-based system to an external device.

Course Format

This is In-person course. Lectures will be delivered in-person at the dates/time specified below. Students will be provided Laboratory kits required.

Course Learning Outcomes (CLO)

Upon successful completion of this course, students will be able to:
• CLO1. Demonstrate an understanding of the microprocessor architecture, its instructions and addressing modes
• CLO2. Analyze a microprocessor program and develop an assembly language programs for applications.
• CLO3. Use development tool for exploring microprocessor architecture, software and hardware development.
• CLO4. Analyze experimental data and prepare technical reports and documents.

Required Texts/Readings

• Laboratory manual, documents, and assignments are available on class Canvas.
• Other Readings:
 o Documents related to Texas Instrument Robotics System Lab Kit Max (TI-RSLK MAX) at https://www.ti.com/tool/TIRSLK-EVM?keyMatch=TIRSLK-EVM&tsisearch=Search-ENeverything&usecase=GPN%23buy

Lab Kits

Each student will be provided a Texas Instrument Robotics System Lab Kit Max (TI-RSLK MAX) to learn and demonstrate the microprocessor-based system. The TI-RSLK MAX is an embedded system based on MSP432P401R microcontroller that interfaces with peripherals such as sensors and motors. The MSP432 is a mixed-signal microcontroller family that is based on a 32-bit 48MHz ARM Cortex-M4F with floating-point operation unit. The Development Environment (IDE) for the TI-RSLK MAX is the Code Composer Studio (CCS) provided by Texas Instruments for use with TI microcontrollers and embedded processors.

Laboratory Exercise Reports

Each laboratory exercise report requires same information and sections as described below and with additional information as described in the lab assignment on Canvas. Each laboratory exercise report must be turned in as scheduled. Students may be asked to demonstrate their lab exercises anytime so please make sure that data and programs are always available. Each student is responsible for individual laboratory exercise reports and late reports will not be accepted.

Each lab report must be prepared neatly and professionally. The technical contents, format, completeness, and appearance of the report all contribute to the report's grade. Students are responsible to include all requested and necessary information in your reports. The report must have sections in order as listed below. Each section must start with the new page.

A cover page with information shown below (a cover page is available on class canvas):
 • EE 120 Laboratory Section #, Semester (example: Fall 2021), Date
 • Laboratory number and title
 • Student full name (Last, first, middle)
 • Lab instructor name
 • Lab report due date (as shown on the last page of the syllabus)
And the remaining sections are listed as below. Each section must start on the new page. Figures and tables must be labeled separately and clearly.
 • Introduction
 • Lab procedure and results
 • Conclusion
All reports must be submitted on Canvas in .pdf file and source codes (if required) must be in either in .c (for C), .cpp (for C++), or .asm (for assembly). No other file formats are accepted unless directed otherwise.

Final Evaluation

Laboratory work will be integrated with the lecture one to determine EE 120 course grade. There will be no grade/pass/non-pass nor final examination for laboratory.

Grading Information

The lab exercises together with the lecture exams, quizzes, homework assignments, etc. make-up EE 120 course grade (as stated in the EE120 lecture syllabus). Lab exercises (lab participations, reports and demos) cover 25% of the course grade. There are 10 lab exercises for the whole semester and each lab will be graded as 100 points. Schedule for lab exercises is shown below.

EE120L - Microprocessor-Based System Design Laboratory, Fall 2021

Course Schedule (Tentative)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics, Readings, Assignments, Deadlines</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08/24/2021</td>
<td>No labs</td>
</tr>
<tr>
<td>2</td>
<td>08/31/2021</td>
<td>Discussion of laboratory syllabus, lab kits, equipment, safety, rules, laboratory report preparation and report submissions</td>
</tr>
<tr>
<td>3</td>
<td>09/07/2021</td>
<td>Instructor lectures lab 1 Students work on lab 1</td>
</tr>
<tr>
<td>4</td>
<td>09/14/2021</td>
<td>Students submit lab 1 report. Instructor lectures lab 2 Students work on lab 2</td>
</tr>
<tr>
<td>5</td>
<td>09/21/2021</td>
<td>Students submit lab 2 report. Instructor lectures lab 3 Students work on lab 3</td>
</tr>
<tr>
<td>6</td>
<td>09/28/2021</td>
<td>Students demo lab 3 and submit lab 3 report. Instructor lectures lab 4 Students work on lab 4</td>
</tr>
<tr>
<td>7</td>
<td>10/05/2021</td>
<td>Students demo lab 4 and submit lab 4 report. Instructor lectures lab 5 Students work on lab 5</td>
</tr>
<tr>
<td>8</td>
<td>10/12/2021</td>
<td>Students demo lab 5 and submit lab 5 report. Instructor lectures lab 6 Students work on lab 6</td>
</tr>
<tr>
<td>9</td>
<td>10/19/2021</td>
<td>Students demo lab 6 and submit lab 6 report. Instructor lectures lab 7 Students work on lab 7</td>
</tr>
<tr>
<td>10</td>
<td>10/26/2021</td>
<td>Students demo lab 7 and submit lab 7 report. Instructor lectures lab 8 Students work on lab 8</td>
</tr>
<tr>
<td>11</td>
<td>11/02/2021</td>
<td>Students demo lab 8 and submit lab 8 report. Instructor lectures lab 9 Students work on lab 9 (2-week lab)</td>
</tr>
<tr>
<td>Date</td>
<td>Event Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>11/09/21</td>
<td>Students continue to work on lab 9 (2-week lab)</td>
<td></td>
</tr>
<tr>
<td>11/16/21</td>
<td>Students demo lab 9 and submit lab 9 report. Instructor lectures lab 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Students work on lab 10 (2-week lab)</td>
<td></td>
</tr>
<tr>
<td>11/23/21</td>
<td>Students continue to work on lab 10 (2-week lab)</td>
<td></td>
</tr>
<tr>
<td>11/30/21</td>
<td>Students demo lab 10 and submit lab 10 report</td>
<td></td>
</tr>
</tbody>
</table>

Check SJSU Health Advisories website for updated information about university requirements and rules https://www.sjsu.edu/healthadvisories