Course and Contact Information

Instructor: Juzi Zhao
Office Location: ENG 371
Telephone: (408) 924-3993
Email: juzi.zhao@sjsu.edu
Office Hours: TuTh 10am-11.30am and by appointment
Class Days/Time: TuTh 3pm - 4.15pm
Classroom: Boccardo Business Center 326
Prerequisites: EE 281 or CMPE 206 (with grade of “B” or better)

Faculty Web Page and MYSJSU Messaging

Course materials such as syllabus, handouts, notes, assignment instructions, etc. can be found on Canvas Learning Management System course login website at http://sjsu.instructure.com. You are responsible for regularly checking with the messaging system through MySJSU at http://my.sjsu.edu and SJSU Canvas to learn of any updates.

Course Description

The course provides the underlying principles and practices of modern network security. Network security architectures and protocols are examined and emphasis is given to their performance and implementation aspects. Symmetric and public-key encryption schemes are discussed in details. Authentication, hash functions, and key management schemes are also covered and their impacts on computer network security are compared. Several aspect of Network Security like OSI Security, IP Security, etc. would also be discussed.

Course Learning Outcomes (CLO)

Upon successful completion of this course, students will be able to:

1. Learn to identify and define the different threats to network systems: secrecy, authentication and data integrity.

2. Learn Symmetric-Key Algorithms which include Data Encryption Standard (DES), RC4, and Advanced Encryption Standard (AES) are discussed and their performances are compared.

3. Learn the Different types of encryption mode are explained and their pros and cons are discussed
and their hardware implementation impacts on performance: Electronic Code Book Mode, Cipher Block Chaining Mode, Cipher Feedback Mode, Stream Cipher and Counter Modes.

4. Learn public-Key Algorithms Key Distribution: Detailed implementations of the RSA algorithm are provided and when it is more practical to implement Public-Key algorithms is discussed.

5. Learn electronic Digital Signatures: are defined using symmetric-key and public-key approaches.

Required Texts/Readings

Textbook

Other Readings

Handouts posted on the course webpage.

Other technology requirements / equipment / material

This course requires each student to have a personal notebook computer installed with a modern operating system, such as MS Windows ™, Mac OS X ™, or Linux. The personal computer must be able to connect to Internet and capable of running at least three instances of virtual machines, such as VMWare ™.

Course Requirements and Assignments

SJSU classes are designed such that in order to be successful, it is expected that students will spend a minimum of forty-five hours for each unit of credit (normally three hours per unit per week), including preparing for class, participating in course activities, completing assignments, and so on. More details about student workload can be found in University Policy S12-3 at http://www.sjsu.edu/senate/docs/S12-3.pdf.

There will be one midterm exam, a project and a final exam. All exams are CLOSED book and notes. Exams cover the assigned reading materials and class lecture notes. There will be NO make-up exams. Exam solutions will be posted on the web site of the course.

NOTE that University policy F69-24 at http://www.sjsu.edu/senate/docs/F69-24.pdf states that “Students should attend all meetings of their classes, not only because they are responsible for material discussed therein, but because active participation is frequently essential to insure maximum benefit for all members of the class. Attendance per se shall not be used as a criterion for grading.”

Final Examination or Evaluation

Final exam will be held on May 18 (Friday), 2.45pm-5pm. It will be comprehensive and will be count as 30% of the total grade.
Grading Information

Grades

Homework assignments 10%
Quizzes 10%
Project 20%
Presentation 10%
Midterm Exam 20%
Final Exam 30%

--

Total 100%

The instructor reserves the right to change the percentages

Failure to complete and submit 90% of homework and project assignments will result in a failing grade in this class. Late homework will not be accepted. There will be in-class quizzes.

Plagiarism, i.e., cheating, will result in a grade of F for the class as well being referred to the Department Chair.

Assignments and project reports are to be submitted through Canvasin soft copies.

Grading (tentative):

<table>
<thead>
<tr>
<th>Grade</th>
<th>Overall Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>98-100</td>
</tr>
<tr>
<td>A</td>
<td>94-97.99</td>
</tr>
<tr>
<td>A-</td>
<td>90-93.99</td>
</tr>
<tr>
<td>B+</td>
<td>85-89.99</td>
</tr>
<tr>
<td>B</td>
<td>75-84.99</td>
</tr>
<tr>
<td>B-</td>
<td>70-74.99</td>
</tr>
<tr>
<td>C</td>
<td>60-69.99</td>
</tr>
<tr>
<td>D</td>
<td>50-59.99</td>
</tr>
<tr>
<td>F</td>
<td>0-49.99</td>
</tr>
</tbody>
</table>
Classroom Protocol

Students should turn their cell phones off or put them on vibrate mode while in class. Students are expected to participate in class discussions as well as online discussion in the class website. Asking questions during class-time related to the lectures is encouraged. Students are required to engage in classroom activities, submit assignments and reports on time, and take exams and tests on time.

University Policies

Per The [University Course Syllabi Policy S16-9](http://www.sjsu.edu/senate/docs/S16-9.pdf), university-wide policy information relevant to all courses, such as academic integrity, accommodations, etc. will be available on Office of Graduate and Undergraduate Programs’ Syllabus Information web page at http://www.sjsu.edu/gup/syllabusinfo/”

Course Schedule

Course Schedule (Subject to change with fair notice as announced by instructor in class)

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan 25</td>
<td>Introduction, Overview</td>
</tr>
<tr>
<td>2</td>
<td>Jan 30</td>
<td>Classical Encryption Techniques, Block Ciphers</td>
</tr>
<tr>
<td>2</td>
<td>Feb 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Feb 6</td>
<td>Symmetric Ciphers -DES, ASE</td>
</tr>
<tr>
<td>3</td>
<td>Feb 8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Feb 13</td>
<td>Pseudorandom Number Generation</td>
</tr>
<tr>
<td>4</td>
<td>Feb 15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Feb 20</td>
<td>Public Key Crypto, RSA</td>
</tr>
<tr>
<td>5</td>
<td>Feb 22</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Feb 27</td>
<td>Other Public Key Crypto</td>
</tr>
<tr>
<td>6</td>
<td>March 1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>March 6</td>
<td>Cryptographic Hash Functions</td>
</tr>
<tr>
<td>7</td>
<td>March 8</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>March 13</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>March 15</td>
<td>Midterm</td>
</tr>
<tr>
<td>9</td>
<td>March 20</td>
<td>Digital Signature, MAC</td>
</tr>
<tr>
<td>9</td>
<td>March 22</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Topics</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>---</td>
</tr>
<tr>
<td>10</td>
<td>March 27</td>
<td>Spring Recess</td>
</tr>
<tr>
<td>10</td>
<td>March 29</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>April 3</td>
<td>Key Management and Distribution</td>
</tr>
<tr>
<td>11</td>
<td>April 5</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>April 10</td>
<td>User Authentication Protocols</td>
</tr>
<tr>
<td>12</td>
<td>April 12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>April 17</td>
<td>Web Security, Internet Security</td>
</tr>
<tr>
<td>13</td>
<td>April 19</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>April 24</td>
<td>Student Presentation</td>
</tr>
<tr>
<td>14</td>
<td>April 26</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>May 1</td>
<td>Student Presentation</td>
</tr>
<tr>
<td>15</td>
<td>May 3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>May 8</td>
<td>Student Presentation, Review</td>
</tr>
<tr>
<td>16</td>
<td>May 10</td>
<td></td>
</tr>
<tr>
<td>Final Exam</td>
<td></td>
<td>May 18 during 2.45pm-5pm</td>
</tr>
</tbody>
</table>

San Jose State University

Electrical Engineering Department

EE Department Honor Code

The Electrical Engineering Department will enforce the following Honor Code that must be read and accepted by all students.

“I have read the Honor Code and agree with its provisions. My continued enrollment in this course constitutes full acceptance of this code. I will NOT:

- Take an exam in place of someone else, or have someone take an exam in my place
- Give information or receive information from another person during an exam
- Use more reference material during an exam than is allowed by the instructor
• Obtain a copy of an exam prior to the time it is given

• Alter an exam after it has been graded and then return it to the instructor for re-grading

• Leave the exam room without returning the exam to the instructor.”

Measures Dealing with Occurrences of Cheating

• *Department policy mandates that the student or students involved in cheating will receive an “F” on that evaluation instrument (paper, exam, project, homework, etc.) and will be reported to the Department and the University.*

• *A student’s second offense in any course will result in a Department recommendation of suspension from the University.*