Real Time Optical Flow System Design

On FPGA

Vishal Prajapati

Department of Electrical Engineering, San Jose State University, San Jose, California 95192

Introduction

This paper shows an extensively used algorithms I.e.
FAST (Features from Accelerated Segment Test)
and SAD (Sum of Absolute Difference) being
developed on a Field Programmable Gate Array to
detect motion of any moving object in real time.[12]
Detection of any moving object is one of the
Important tasks in driverless cars. By detecting
moving objects around the car, decisions on speed,
direction of the car etc. can be computed.

Two dimensional image motion is concluded from
the objects with three dimensional motion. On the
same Image plane, motion is related to a visual
sensor. We can estimate the motion of projected two
dimensional image Iin terms of velocities of
Instantaneous Image or displacements of discrete
Image allowed by time ordered image sequences.
These are commonly known as image velocity field
or optical flow field. If the optical flow is an
approximation of two dimensional image motion,
then it can be used to recover the three dimensional
motion of sensor.

Optical flow computation of any real time moving
object can be done by various algorithms. There are
various new techniques which are being developed.
SAD and FAST are hugely used algorithms used for
this implementation. In this project, these algorithms
were implemented on the field programmable gate
array. By doing this, optical flow of any object in
real time can be found. Optical flow shows how the
object i1s moving around and distance from object.
The system works on the HD video of 1980x1080
resolution.

Architecture

Software Implementation

Using the Vivado HLS video libraries, we can
Implement OpenCV applications on ZC702. From
prototyping of algorithm to execution in system, in
this design process OpenCV can be used many a
times.[2] With the help of Vivado HLS we can get
synthesizable C++ code using video libraries.

Image Read (OpenCV)

1
Image Read Video Frame Read Video Frame Read

(OpenCV) OpenCV2AXNvideo
1

AXlvideo2Mat

OpenCV function OpenCV function HLS video liorary Synthesized FPGA
chain chain function chain e Processing Block

Mat2AX video

1
AXlvideo20penCV

Image Write ' _
(OpenCV) Video Frame Write +

Image Write (OpenCV)

Video Frame Write

Hardware Implementation

Xilinx is one of the renowned companies making
field programmable gate array (FPGA) boards. In
this project Xilinx Zyng ZC702 board was used.
This board comes up with many useful features that
we can use In designing systems.

Key References

Design Flow

We will now see the steps to develop hardware
environment for the system design using the Xilinx
Vivado Design Suite, Vivado HLS, XSDK
(Software Development Kit and PetaLinux design
tools). That will focus on the design flow specific
for the Zyng architecture. The design was built on
the TRD (Targeted Reference Design) base of the
ZC702.

File Edit Project Solution Window Help
&, e RGeS aor-YMH A-Fia @
L Explorer &3 s = 8 ED image_filter_csynth.rpt &3 =| image_filter_csim.log
a == prj
- [a Includes
4 = Source = Summary

lz| top.cpp Mame BRAM_18K DSP4BE FF LuT
- i Test Bench Expression - -] 14

. 3 Spartanb FIFO 48 - 998 3686

G vined Tnstance 60 - 200 2231
4 = Zyng
4 %% constraints Memary

“f directivesitcl Multiplexer B B) 98

4 script.tel Register - - 66 -
4 [= csim Total 108 0 3354 6029
. = build Available 280 220 106400 53200

+ L= report Utilization (36) 38 0 3 1

For the migration of algorithms which are coded In
C, C++ to RTL code, Vivado HLS is useful tool and
environment for this migration. Hardware will run
on HDL (Hardware Description Language) which is
generated by Vivado In terms of bit stream. Below is
the screenshot for the HLS project built in Vivado
HLS and generated synthesis report of that project.
SAD and FAST algorithms were written in C.

These algorithms were simulated successfully and
then synthesized successfully in Vivado HLS. HD
video Is captured and then converted iInto
subsequent frames for the implementation of FAST
and SAD algorithm. By this synthesis we can get
data like utilization estimates in that, all the
utilizations of memory (BRAM), slices (DSP), flip
flops (FF), look up tables (LUT). You can see
spartan6, virtex7 and zyng in the left side menu I.e.
for the comparison of the results from three different
families.

Hardware for Real Time Optical Flow Computation

The above figure is the schematic for the hardware
Implementation of real time optical flow
computation. There are various blocks connected to
Zynqg processing system. The connected blocks are
clocking wizard, processor system reset, AXI
performance monitor, HDMI output and input and
AXI interconnect. In the above block diagram you
can see that processing system consists of memory
Interfaces, Input output peripherals, application
processor unit and interconnect. Whereas
programmable logic consists of common and
custom peripherals and accelerators.

[1]K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, “Wallflower: principles and
Practice of background maintenance” in Proc. 7th IEEE Conf. Computer Vision, 1999, vol. 1, pp. 255—

201.

[2]“http://www.xilinx.com/support/documentation/boards and kits/zc702 zvik/ug850-zc/02-eval-bd.pdf

(14

[3]G.L.Foresti,” A Real Time System for Video Surveillance of Unattended Outdoor Environments™.

[4]J. M. Ferryman, Ed., in Proc. 9th IEEE Int. “Workshop on Performance Evaluation of Tracking and

Surveillance”, 2006.

Analysis & Results

As to summarize the results, when only SAD
algorithm iIs applied on the frame of image, there is
an unwanted noise noticed In the image. After
applying FAST, the frame of image was obtained in
corners of the object. Now If we apply SAD on this
corner points, all the unwanted noise was eliminated
from the frame of image. The condition to calculate
SAD in each block was that if there iIs at least one
corner detected in the block.

35000
31174

Image Size 1080p 30000
Harris | FAST
Target Clock 6.67 6.67 25000
Estimated
Clock 663| 6.11 o T

BRAM 18K 125 59 :

FF| 19923 7667

~ 15000 i 13112

LUT 31174 13112 10000
min (ns) 483 174
max (ms) | 6.2359 | 6.2848

25000 629 §.284814

19323

aaaaa

LLLLL
15000

~~~~~~~~
10000 T d 7667 %5 624 6.23593

From the figure above we can see the comparison
between Corner Harris and FAST algorithms.
Corner Harris algorithm was implemented with
large numbers of FF, LUT as compared to FAST
algorithm. FAST is preferable over Harris. Both the
algorithms implemented on the same image size of
1080p of resolution. The figure below shows for the
different threshold value the numbers of corners
detected varies. With the increment In threshold
value, the numbers of corners detected decreases as
you can see In images above with the original image
given.

Cormer detection with threshold values

Threshold 10 Threshold 20

Conclusions & Future Work

Finally to summarize this project, conclusion can be
made that a new technique was developed in this
project to detect motion and evaluate optical flow of
any object. By implementing FAST and then SAD
algorithm, complex calculations can be reduced and
performance can be more efficient than other
algorithms.

As to extend this project further one can pipeline
SAD and FAST algorithms on the hardware to make
system more efficient to eliminate complex
calculations. Implementation of optical flow can be
done on Virtex 7 board. This will make system
perform more efficiently than Spartan 6 and Zynag.

Acknowledgments

| would acknowledge my project advisor, Prof. Morris Jones for all his
teaching and guideline throughout the project. Without him I could not
complete this project.

For further information

Please contact vishalprajapati 0012@yahoo.com
408-614-8841



mailto:vishalprajapati_0012@yahoo.com

